Energiewende
Durchbruch bei Solarzellenforschung
Ein neuartiges Laserritzverfahren der Laser- und Medizin-Technologie in Berlin ermöglicht eine saubere Trennung von mono- und polykristallinen Silicium-Wafern ohne die bei herkömmlichen Verfahren typischen Wirkungsgradverluste von bis zu 30% bei der Separierung von Solarzellen.
29.01.2003
Das neuartige Laserritzverfahren der Laser- und Medizin-Technologie GmbH, Berlin (LMTB), für mono- und polykristalline Silicium-Wafer ermöglicht eine saubere Separierung, ohne dass die Photospannung absinkt und der Wirkungsgrad gemindert wird. Damit wird die bisherige Einteilung in Leistungsklassen bald hinfällig sein, da es nur noch Top-Klasse-Solarzellen mit maximalem Wirkungsgrad geben wird - und dies zu einem günstigeren Preis.
Gegenüber 2000 ist die Produktion von Solarzellen im vergangenen Jahr um 40 % gestiegen. Für das Jahr 2010 wird ein Bedarf an neuinstallierter Kapazität zwischen 1500 und 2000 MWp[1] vorausgesagt. Die weltweite Jahresproduktion von derzeit 280 MWp wird daher deutlich ansteigen müssen und der Preisdruck auf die Hersteller erheblich wachsen.
Für verschiedene Anwendungen müssen Solarzellen bei definierter Größe eine bestimmte Spannung abgeben. Da es zu teuer wäre, für jede Anwendung spezielle Solarzellen herzustellen, unterteilt man Standard-Wafer in kleine Segmente und erzeugt die gewünschte Spannung durch Reihenschaltung.
Stand der Technik ist hierfür das Trennen der Solarzellen mit Diamantsägen, wodurch aber lokale Kurzschlüsse am p-n-Übergang entstehen. Diese sog. "edge-shunts" verringern den Wirkungsgrad einer Zelle um bis zu 30 %. Um diesen Effekt zu vermeiden, setzt man heute zunehmend das Diamantritzen ein, bei dem der Wafer bis zu einer bestimmten Tiefe geritzt und dann gebrochen wird. So entstehen zwar keine Kurzschlüsse, das Verfahren ist jedoch entweder sehr teuer oder ungenau und verursacht zusätzlich sehr viel Staub, der die spätere Verarbeitung erschwert und verteuert.
Schon früh wurden hier die Möglichkeiten des Lasers erkannt. Das zunächst erprobte Laserschneiden brachte nicht die erwarteten Verbesserungen. Nun ist in den Labors der LMTB ein Verfahren entwickelt worden, das den Ansatz des Ritzens mit anschließendem Brechen aufgreift. Dazu wurde ein spezielles Lasersystem mit einer innovativen Leistungsstabilisierung entwickelt. Die so gewonnenen Solarzellen haben keine Leistungsverluste mehr und sind praktisch sofort weiter zu verarbeiten. Dabei ist es unerheblich, ob es sich um mono- oder polykristalline Wafer handelt.
Da neben Silicium auch Saphir und Siliciumcarbid für die Halbleiterindustrie interessant sind, wurden auch hierzu erste Versuche bei der LMTB durchgeführt - mit vielversprechenden Resultaten.
Gegenüber 2000 ist die Produktion von Solarzellen im vergangenen Jahr um 40 % gestiegen. Für das Jahr 2010 wird ein Bedarf an neuinstallierter Kapazität zwischen 1500 und 2000 MWp[1] vorausgesagt. Die weltweite Jahresproduktion von derzeit 280 MWp wird daher deutlich ansteigen müssen und der Preisdruck auf die Hersteller erheblich wachsen.
Für verschiedene Anwendungen müssen Solarzellen bei definierter Größe eine bestimmte Spannung abgeben. Da es zu teuer wäre, für jede Anwendung spezielle Solarzellen herzustellen, unterteilt man Standard-Wafer in kleine Segmente und erzeugt die gewünschte Spannung durch Reihenschaltung.
Stand der Technik ist hierfür das Trennen der Solarzellen mit Diamantsägen, wodurch aber lokale Kurzschlüsse am p-n-Übergang entstehen. Diese sog. "edge-shunts" verringern den Wirkungsgrad einer Zelle um bis zu 30 %. Um diesen Effekt zu vermeiden, setzt man heute zunehmend das Diamantritzen ein, bei dem der Wafer bis zu einer bestimmten Tiefe geritzt und dann gebrochen wird. So entstehen zwar keine Kurzschlüsse, das Verfahren ist jedoch entweder sehr teuer oder ungenau und verursacht zusätzlich sehr viel Staub, der die spätere Verarbeitung erschwert und verteuert.
Schon früh wurden hier die Möglichkeiten des Lasers erkannt. Das zunächst erprobte Laserschneiden brachte nicht die erwarteten Verbesserungen. Nun ist in den Labors der LMTB ein Verfahren entwickelt worden, das den Ansatz des Ritzens mit anschließendem Brechen aufgreift. Dazu wurde ein spezielles Lasersystem mit einer innovativen Leistungsstabilisierung entwickelt. Die so gewonnenen Solarzellen haben keine Leistungsverluste mehr und sind praktisch sofort weiter zu verarbeiten. Dabei ist es unerheblich, ob es sich um mono- oder polykristalline Wafer handelt.
Da neben Silicium auch Saphir und Siliciumcarbid für die Halbleiterindustrie interessant sind, wurden auch hierzu erste Versuche bei der LMTB durchgeführt - mit vielversprechenden Resultaten.
Quelle: UD